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ABSTRACT

We provide sufficient conditions under which two random vectors could
be stochastically compared using the standard construction. These conditons
are weaker than those discussed by Arjas and Lehtonen (1978) and Veinott
(1965). Using these conditions we present extensions of (i) a result of
Block, Bueno, Savits and Shaked (1984) concerning the stochastic mono-
tonicity of independent and identically distributed random variables condi-
tioned on their partial order statistics, and (ii) a theorem of Efron (1965)
regarding an increasing property of P;lya frequency functions. Applica-

tions of these extensions are also pointed out.

Key words: Random vectors, stochastic ordering, negative dependence,

Polya frequency function, component cannibalization.
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1. INTRODUCTION

Let X and Y be two real valued random variables with survival functions

F and G respectively. Then X is said to be stochastically larger than Y if:
(1.1) F(t) 2G(t) , teR

¢ and is written X 2, Y [When equality holds in (1.1) for all values of t we
write X :t Y. That is, they are equal in law]. Once F and G are given it
is usually easy to verify (1.1). The natural extension of (1.1) for finite
or infinite dimensional random vectors is as follows [e.g. Kamae, Krengel

§ and O'Brien (1977)]: Let X = (X1,X2,...) and Y = (Y1,Y2,...‘) be two
n-component random vectors [n 2 1 or n = ®] with survival functions F and

G respectively. Then X is said to be stochastically larger than Y if
(1.2) P{X € A} 2 P{Y ¢ A} for every increasing set A ¢ R" ,

and is written X zst Y [When equality holds in (1.2) for all increasing sets
A ¢ R" we write X S: Y]. In this paper 'increasing' stands for 'nonde-
creasing' and 'decreasing' for 'nonincreasing'. Unfortunately, even with F
and G explicitly specified it is usually not very easy to verify (1.2).

However, in light of

~

Lemma 1.1: X 2., Y if and only if there exist two random vectors X

~

and Y defined on a common probability space such that P{X 2 Y} = 1

Pl N M '

A

and X st X and Y S: Y,
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[e.g. Kamae, Krengel and O'Brien (1977)], effort has been made to stochas-

tically compare random vectors by constructing them on a common probability

space. In this respect three alternative constructions have been used. :..
\
They are (i) standard construction [e.g. Arjas and Lehtonen (1978)], (ii) :_,
non-homogeneous Poisson process (NHPP) construction [e.g. Shaked and
~]
Shanthikumar (1984)1, and (iii) total hazard construction {[e.g. Norros o
(1984), Shaked and Shanthikumar (1985)]. Since we will be using the :7-."
standard construction we will describe it here. Let
X
F(t) = P{X, >t} , teR ,
-:\
and ;;:
v
Filtig_q) = P{X; > tIX) = x0, X, = x,, X4 = %k =
K
XX X teR; j22 *
1’ 2 j'1' ! )] & . .'.:~
Note that the dimension of the vector X1 will vary depending on where it i
is used. In Fj(")ij-1)’ >_<_J._1 will represent (x1,x2,...,xj_1). We will follow . :::::
this convention throughout this paper. Define (51 and éj(-lxj_1) similarly.
Standard Construction: Let I{H} be the inverse function of a survival X -
function H [that is, I{H}(u) = inf{t € R: H(t) > u}, u ¢ (0,1)] and =
U= (U1,U2,...) be an n-vector with independent components uni- :l:.j-_
formly distributed in (0,1). Construct X = (X1,X2,...) such that :'-:",;
Y
.::\'
AN
o S




~

X, = |Eﬁ1}(u1) )

and given X1 = x1, X2 = xz,...,x.

>

X; = |{ﬁj(‘|§j_1)} (U, jz2

Then one has [e.g. Arjas and Lehtonen (1978)].

Lemma 1.2: Let X be the values obtained through the standard construc-
tion.
Then X 52 X.

Using the standard construction, Lemma 1.1 and 1.2, Arjas and Lehtonen
(1978) [also see Veinott (1965)] have obtained sufficient condition on F and

G that satisfy (1.2). Specifically they have

Lemma 1.3: Suppose

IE1(t) 2 G'1(t) , teR

(1.3) and
F.(tix, G,(tl , teR ,
J( —r1) ( X11)
Xi > y|/ i=1/2,...,j'1; ] ¢ 2
Then
(1.4) )Sgsty_

One may easily verify that if X and Y are constructed using a common
X 2 Y. Conditions different from

v

U for both in the standard construction,

(1.3) that imply (1.4) have been obtained using the NHPP construction [see

Shaked and Shanthikumar (1984)] and total hazard construction [see Norros

.
-
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tj (1984), Shaked and Shanthikumar (1985)]. In this paper we provide con-
'I

"\" ditions weaker than (1.3) that imply (1.4) and prove it using the standard
_‘ construction [see Section 2]. Using these results we obtain extensions of
o

)

;{ (i) a result of Block, Beuno, Savits and Shaked (1984) concening the sto-
EC:' chastic monotonicity of independent and identically distributed [i.i.d]

N random variables conditioned on their partial order statistics, and (ii) a

>

EZ theorem of Efron (1965) regarding an increasing property of Polya fre-

quency functions in Sections 3 and 4, respectively. Finally in Section 5 we

establish the negative association of i.i.d random variables conditioned on

the partial order statistics and point out a sample application for resuits in

SRR

[N

Section 3.
The following preliminaries will be required in Sections 3,4, and 5.

Definition 1.1: A random variable Z or its density function h is said to

-~

be Polya frequency function of order two [or log-concave and written

PFZ] if h(s+x)/h(u+x) is decreasing in x ¢ R for all s > u [Karlin

(1965)].
The following closure property of PF2 densities will be needed later.
Lemma 1.5: A convolution of two PF2 densities is PFZ'

Definition 1.2: Two random variables X and Y with density functions f and

g are said to be ordered in the sense of likelihood ratio [and written
X erY] if f(t)/g(t) is increasing in t ¢ R [Karlin (1965)].
. >
Lemma 1.6: Suppose X =.Qr‘Y' Then X zstv.
Definition 1.3: A random vector T = (T1, T2,..., Tn) is said to be nega-

tively dependent through stochastic ordering [NDS] if

{(T1,...,Ti_1,T .,Tn)l Ti = t} stochastically decreases in t for

i+17 7"

all values of i = 1,2,...,n.

Block, Savits and Shaked (1985) then show

';.-..-.. s .
-
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)
Lemma 1.7: If T is NDS, then
n
P{T, > ISTERERA IR R 5 - i-l-11 P{T, > t.}
and
n
P{T, = typee, TSt b s N P{Ti st}

-—

2. CONDITIONS FOR STOCHASTIC ORDERING OF RANDOM VECTORS

In this section we provide conditons weaker than (1.3) that imply
(1.4) and prove it using the standard construction. For a given pair of
survival functions F and G define

a(t) = 1{F }(G,(t)), te R and
0 (y;q,t) = R CIg_ () H(G iy ),
y1,y2,...,yj_1,t eR;jz2,

where 9’.,'_1(X}-..1) and x‘._,l will have different number of components depending

on where it is used. 9j-1(xj-1) in ﬁj(-lg_j_1(xj_1)) is (a1(x1),02(x2),...,aj_1
(xj_1)), y; in oti(xi) is (y1,y2,...,yi) and Y1 in aj(xj_1,t) is (y1,y2,...,yj_1).
Then

Theorem 2.1: Suppose

F1(t) 2 G1(t) , teR n

(2.1) and \
- > - . --.-
Fj(t'gj-1(xj'1)) = Gj(tlxj'_»])l y']l"'lyj'_'llt € R, <

Then X 2, Y . ﬂ

~ ~ ‘.. 1

Proof: Constructing two random vectors X and Y according to the standard

construction with a common U one sees that

(2.2) XJ. = aj(Y1, Y2""'Yj)' i 2.

With Condition (2.1) one can easily verify that

..............................
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L
u1(t) 2t, teR s
(2.3) ) .
aj(Xj-1rt) g t, Y1I YZ/"'IyJ‘_“l teR; ] 2 2. E::
From (2.2) and (2.3) one sees that X 2 Y and the resuit now follows E*
from Lemmas 1.1 and 1.2. -
g
Remark 2.1: From (2.3) it is immediately clear that (1.3) implies (2.1). ’

The popularity of using Lemma 1.3 for stochastic comparison of random

vectors is its relative easiness to verify (1.3). As we will see in

Section 3 there are interesting examples which satisfy (2.1) but do not .
satisfy (1.3). In such an example we will also see that it is not hard :jfj
to verify (2.1). M

In some applications it is possible to identify stronger conditions on F and

G that imply (2.1). Such a condition is given in [see Remarks 2.2 and

2.3]: '

Theorem 2.2: Suppose there exist a set of non-negative functions
{b1,b2,. ..} such that

F1(t) 2 G1(t) 2 F1(t+b1), t eR

2.4 and F.(tlx, 2 G.(tly. 2 F.(t + b(x. .,
(2.4) J( _1_1) J( XH) J( }(_1_1 Y- )><J 1)
for te R, Y, t b.| P X4 2 Yoo Vit bi()ii-1’xi-1) 2
X. 2y., i =1,2,...,j=1; j 2 2,

1]

where b is a constant and b (x| 10 Y- 1) bi(x1,x2,...,x.

il
<

y1,y2,...,yi_1), i=2,3,... Then X >st Y.

.........................




Proof: Observe that F:'1(t) 2 G.](t) 2 l:'1(t+b1), t € R implies t + b1 2
or.l(t) Z2t, t e R. Therefore Fz(t|x1) 2 Gz(tly1) 2 Gz(t + bz(x1,y1)lx1),

te R, \& +b1 2 X zy1 implies

1
(2.5) Foltiai(yq ) 2 Gy(tly,) 2 Fo(t + by(a,(y,), vl (y )y, teR.
and hence
(2.6) t + bz(a1(y1),y1) 2 a2(y1,t) 2t, Yqr L E R .

Now as an induction hypothesis assume that

(2.7)  Filtig 4 (y; 1)) 2 Gty _q) 2 Filiwb(ay_1(y; 9Dy )14y 4))

i

and hence
(2-8) t + bl(gi-1(xi'1)lxi'1) g ai(Xi_"lt) g tI Y“I YZI’°‘IYi-‘II t £ RI
for alt i = 2,3,...,j-1. Note that (2.7) and (2.8) are valid for i = 2

[see (2.5) and (2.6)]. Now from (2.8) with i = j-1 and (2.4) one

sees that (2.7) is satisfied with i = j. However, (2.7) with i = j
implies (2.8) with i = j. Then by the induction hypothesis one sees
that (2.7) and (2.8) are true for all values of i = 2,3,...,n. That is

Condition (2.1) of Theorem 2.1 is satisfied. The result now follows by

Theorem 2.1.

Remark 2.2: As we have noted in the proof of Theorem 2.2, Condition

(2.4) implies (2.1).

Remark 2.3: If we set bj= », j 2 1, Condition (2.4) reduces to Condition

(1.3). We will use the above result to obtain an extension of a Theorem of

Efron (1965).
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3. STOCHASTIC MONOTONICITY OF i.i.d RANDOM VARIABLES

vy g v ve o=

CONDITIONED ON ORDER STATISTICS

Let g,. = (21'22""’Zj) be a random vector of j i.i.d random variables

r
- »
with survival function H and density h. Now let £
Nj(8) = #{i:Z; > 1, = 1,2,.0) ’
{Nj(t)} is assumed to be right continuous with left hand limits. For a given
.
> = = = -
rz1, z (21’22""’Zr)’ 2 (21,22,...,2r) and m (m1, m2,...,mr) B
such that z, <z, <<z and 0 £ Rré Mp £...5 22§ m2 s 21 < m, € j, de-
fine éerr&r'E = {._Z_j!Nj(zi) = ‘Qi’ Nj(zi-)=mi, i=1,2,...,r}
Let T = Z. Then simple calculation shows that :
- I_Z_Igln_‘
2 - -
(3.1) P{T1 > t} = j {mi + (Qi_1 - mi)Hg,i(t)} ' ;:
where - _
© H(t) - F(z) %
H, .(t) = — - ' z. . <t<z, g
21 H(z,_,) -H(z) -1 ' ¥
i=1 i "
e
i=1,2,...,r + 1 -
- .
and zj = -, Zoq =t Since Hg,i(t) increases as z,_, and z, increases -
for z, 4 <t<z, it is not hard to see
Lemma 3.1: P{T1 > t} given by (3.1) is increasing in (2, £, m).
»
Now consider P{T2 > tIT,I = t1}. A routine calculation shows that -
: N
- - ’ ' - ' it o
(3.2) P{T2 > tIT1 = t1} = T {mi + (,Qi_1 mi) H?:’i(t)}, ‘
z,_ <t<z, i=21,2,...,r+1, .
.
P

ot
TN )
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where

(3.3) and
mizmi-l(2§t1) ’ i=1,2,...,l‘.

Define T' = (T1, T2,.-.Tj_1) = Zj-1,g,§’,rp_

hand side of (3.2) and that of (3.1) one sees that P{T2 > tlT1 = t1} =

P{T1' >t}, t € R. Now considerng P{T3 > t|T1’ = t2} and continuing this

.. Then comparing the right

one can establish

. - St ! ’
Lemma 3.2: {(TZ, T3,...,TJ.)IT1 = t.]} - Zj-1,5,&’,m” where £'and m

are given in (3.3).

Remark 3.1: Note that the event {Nj(zi) = ‘Qi’ Nj(zi-) =m., i= 1,2,...,r}
la inf tion d isti < £..8Z,.y of Z..
relays information on the order statistics 2[1] 2[2] (i1 o] Z
For example consider the following event [1 £ k1 < k2 <...<kr_ <ijl:

(3.4) A = {Nj(zi) j - ki’ Nj(zi-) = j -ki +1,i=12,...,r},
for some 1 € r £ j.

Then clearly
A = = = = X
{Z[k1] 290 Zk,] T 22 k) 2.}

Block, Bueno, Savits and Shaked (1984) consider the random vector lj
conditioned on event A as given in (3.4) and study its stochastic
monotonicity and NDS properties. Alternatively consider

(3.5) A

{Ni(zi) = j-ki+1 = Nj(zi-), i=1,2,...,r}.
Then

A

Now we present the main theorem of this section.

{Z[k;-ﬂ <z o< Z[k.']’ i =1,2,...,r}, where we set Z(g) =

R L,

)
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Theorem 3.3: Let Z be as defined in this section with j = n. Then ::
—_— =n,z,2,m ’
is stochastically increasing in (z, £, m)[that is (w,u,v) 2
=n,z,&,m = - = - ==
= 2
(€28 => 2y ,u,v %t Zn,c,a,bl"
Proof: Let F and G be the survival functions of X = Z and A
- - Thyw,u,v
\ [
' Y =2 , respectively for some (w,u,v)2 (c,a,b). From Lemma
- £ fncab oS feead
3.1 one has .
X :
: _ ) :
: (3.6) F1(t) 2 G1(t), teR o
-j Now consider or1(t) as defined in Section 2. From (3.6) it is clear ;:
o f.
= = v
that a1(t) 2 t. A careful study of F, and G, fgiven in (3.1) with A
appropriate .values for z, £ and m] will show that for fixed i, c; and \
: . :
- I »
. I
. If u, = a then {t:t>ci} = {t:a1(t) > wi}, ';
o
ifou, > a then {t:t > Ci} c {t:u1(t) > wi} , . S

(3.7) | -
if v; = bi then {t:téci} = {t:a1(t) 2 wi}, and

if v, > bi then {t:t 2 Ci} c {t:a1(t) 2 wi}.

Therefore if we set

u’ = u, - | HEVASE SV < :

i i (WI< a1(y1)) i i (w.|= aT(y1)) 9
and

R T CRR I I R O R I
from (3.7) one sees that for all Yq € R, (u’, v') 2 (a’', b"). There- "

I
[/

o

fore from Lemmas 3.1 and 3.2 one has
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r
r
" .
)
7
' ;
" - s&
R {XZ,X3,...,X IX1 = 01(y1)} = ;n_.]’“_”'ir’\_/l '
(Y,,Y Y Iy, =y} %tz 5
. 2’ '3 Tn 1 1 =n-1,c,a’,b’ ' ;
. "
, and
,. Fo(tla,(yq)) 2 Gy(tly,) , y,, t & R.
\ Therefore a continued application of the above analysis will result in
. F 2 G s o2
N Fj(tlgj_1(xj_1)) = Gj(tly_j_»])/ y1ry21---IYj_1l teR; j22
That is (ij) and (éj) satisfy Condition (2.1) of Theorem 2.1 and there- 2
> N
fore X 2 Y- r
g
Now combining (3.4) with fhe above result one obtains N
:; Corollary 3.4: For some 1 £ r £ n, z, < z, <...<zr_, and 1 s k1 < k2 <.. \
: 5
< = = = . = . »
<k.snletT {gnlz[k1] z,, Z[k7] Zy)-- 'Z[kr‘] z.}. Then T
. is (i) stochastically increasing in z and (ii) stochastically decreasing in "
. Block, Beuno, Savits and Shaked (1984) proved (i) [see the Corollary ',::
- ¢
. »

to Lemma 4.2 there]. They also used this result to show some negative

: dependence properties of T. In Section 5 we will show the negative

dependence property of Z

g Zn,2,2,m" Now combining (3.5) with Theorem

| I

3.3 one obtains [as a special case].

AR
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Corollary 3.5: For some 1 < k£nand ze R letT = {Z 1Z <

[k-1] ©
Z[k]}. Then T is stochastically increasing in z and is decreasing in k.

We will use the above resuit to provide a decision rule for selecting

components during cannibalization [see Section 5].

INCREASING PROPERTY OF POLYA FREQUENCY FUNCTIONS

Let Z = (21, 22,...,Zn) be n mutually independent PF2 random vari-
ables with density functions (h1, h2,...,hn). Let g =z {ZI1Z 1=s} , where
..1) is of appropriate dimension.
Theorem 4.1: For some s 2 u, let F and G be the survival functions of gs
and Z;u respectively. Then (i) F and G satisfy Condition (2.4) of Theorem 2.2,

ZU

N S
and (ii) Z 2. 2.

Proof: From Theorem 2.2 and (i), (ii) follows. So consider (i). Let qj be
the density function of the sum Zj + Zj+1 +...+ Zn' Then if (fj) and

(gj) are the densities of (F‘J.) and (éj) respectively,

g.(t) q,(u-t) q,(s)

JC H Cag)

Note that s-t 2 u-t and since g, is PF, [Lemma 1.5], q2(s-t)/q2(u-t) and

hence f1(t)/g1(t) increases in t. That is X Y, and from Lemma 1.6, one..

>
1 “4r
has

F (t) G (t) , . Now consider

f (t +(s-u)) ) h1(t + (s-u)) qq(u)

h,(t) a;(s)




3

(9

Since h, is PF,, h1(t-(s-u))/h1(t) and hence f1(t-(s-u))/g1(t) decreases in

t. Therefore as before Y1 2 X1-(s-u) and

=2r
(4.1) F1(t) 2 G1(t) 2 F‘l(t + b1) ,
where
b1 = s-u
Now let
j-1
bj(>_<_j_1,xj_1) z s-u- i§1 (xi - yi) f 0 =2,3,...,n.

From (4.1) one has Yt b1 2 01(y1) 2 Y- Hence with restriction v, t b
X4 2 Y, one sees that
(4.2) b2(x1,y1) 2 0.
Now as an induction hypothesis assume that
(A1) b,.(>1i
(A2) Condition (2.4) holds for all values of j up to 2-1.

_1r¥j_-‘) 20 ’ ] S £ and

Note that (A1) and (A2) is true for £ = 2 [see (4.1) and (4.2)]. Consider

2-1 2-1
fa(tix, 4) Qg4q(s-t- izi1 ) q,z(wif1 Y;)

2-1 2-1
9,(tly, 1)) Qg yq(u-t- i=>21 y;) q,(s- i; x.)

Since by Assumption (A1), b2(§ ) 2 0, one has

2-1"Yg-1

-

Y ol

28 g G e
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Therefore as before
= = > = =
EXgIXq = Xqree Xy g = Xgqd 20 IVpIYg = yqree Ygq = Ypqd
Y; b(x|1’ ¥|1)' zyi, i=1,2,...,2-1, and
>
Fl(t'52-1) 2 Gz(tlx2-1) .

Now consider

2-1
Fo(t + by(xy 11¥p 1)1%g.q) ( CENCHPRI) I AR
( 2-1
g,(tlyy ) hy(t) qy(s- % x,)
i=1 '
Since by Assumption (A1) b (x2 1¥g- 1) 0, the log concavity of h,
implies
(4.3) F2(t|§£_1) 4 Gz(tlx2_1) 2 F (t + b2(52_1,x2_1)l>52_1) ,

for ali yq * b1 2 X4 Z.y1, Y; b(x' 17Y- 1) 2 X; 2 Y;

With (4.3) one has

(4.4) Yo * by(Xg 1/¥p 1) 2 ay(yy) 2y,
Therefore with the restriction y, + b, 2 x, 2 y,, y; + b.(%; 4 xi_1) 2
X; 2 Yir i=1,2,...,2-1 one obtains

(8:5) Bpq(Xgryg) = Bylxg qr¥gq) = (xg = yy) 2 0.

From (4.3) and (4.5) and the induction hypothesis one sees that

F and G satisfy Condition (2.4).

Remark 4.1: Efron (1965) using an alternative proof established (ii)

of Theorem 4.1. The discrete analogue of this result has proved
to be very useful in the analysis of queueing networks [see
Shanthikumar and Yao (1985a), (1985b)]. We will next provide an
extension [the main result of this section] of Theorem 4.1. This
extension has useful applications in the analysis of queueing

network and these applications will be discussed elsewhere.

] MR

o
f ",

TN




. 15 b
| .
" -~ A ~ -~ ~ -~ A ~ ~
L9
F Theorem 4.2: Let X = (XT’ XE,...,Xn) and Y = (Y,, Y?_,..., Yn) ’
' ~
i be two independent random vectors of mutually independent elements _
: with PF2 densities ( f1, f2,...,fn) and (g1, 92""’gn) respectively.
! For some s and u define -3
= {XIX 1=s}and Y = {YIY 1 =u} . 5
Suppose for some 0 < a; < @ .
y A ~ ~ ..
.- > > - . = .
:: Xi =eri =J”Xi a , i 1,2,...,n. \.
. n
Then for s2u + 2 a. , X2 _VY.
- i - st - -
A i=1 N
Proof: Suppose we can show that
~ A ~ -~ ~ a‘
= >
(4.6) {)f1, Y2,..., Yﬁlx1 + Y?_ Lot Yn v} 25t "
= > ol
{Y 2,.,YIY1+Y2+...+Yn u},v=u+a1.
Then applylng (4 6) with X2 replacing Y2 one sees that N
{X 2, v3,...,vn1x1 } <
- o>,
+x2+Y3+ +Yn-w} ;
st{x1’ 2r Y3 ’Ynlx]:' -
o N N
= >
+Y2+Y3+ +Yn v},w=v+a2
;st{v1 Y2, Y3,. ’Yn|Y1'f,7 X
AV, ;-
+Y2+Y3+..+Yn-u}, :
w2V +a, .‘
2uta,ta, ]
Continuing this way one can obtain the desired result. Hence all we need =
is to establish (4.6) for v = u + a,. So without loss of generality let the :
left hand side of (4.6) be X and the right hand side be Y, with survival K,

3}
e,

functions F and G, and densities f and g, respectively. Then,

-
e “ay
s e _o_ o m

o
#
4
o v

- K K - e T TR TR T T S PR U Y .t Y e YNt T D T T P NP VLN A
O A s P A v - SR A R

3 -, n."-'u' LR \ n. v uf"-_"‘ . -.‘ » . PRSI ,‘_‘ ',’.. '-"..-
g D » L ol ~ -
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nw f1(t>§ § av-t) ) ((9q * ay(u)

g,(t) g,(t) ay(u-t))  fi * g,(v)

‘
~

where q, is the PF.2 density of Z Y and * stands for convoliution
i=2

As before one sees that f (t)/g1(t) is increasing in t and hence
F(t) G(t),teR

Consider
f.l(t + a.l) N f1(t + a1) g, x q2(u)
g,(t) g(t) f1 % ay(v)

The above expression is decreasing in t and hence

F1() G(t) F(t+a)

So IE1 and G1 satisfy (2.4) with b1 = a, 2 0. Now note that

{X.], X2,...,an>< = x1}

1

{YZ, Y3,...,Yn|Y2 + Y3 + ... + Yn = .E

v - x,} = Al
and similarly *
{Yor Yarooy Y IV, =y ) = -
(Yo, Yoo /Y IV, # Yo+ L Y= | ‘_
yY- .

u-y, 3 = Y9V

Then for \& + b1 2 X, 2 Yir vV T Xy 2 U=y, and therefore from Theorem 4.1
one sees that fEJ. and éj' j 2 2 also satisfy Condition (2.4) of Theorem 2.2
Hence X 2_. Y .

st -
Remark 4.2: Obviously when Xi 2 Yi’ one can set ai =0, i=12,...,n.
Then Theorem 4.2 specializes to Theorem 4.1. Now suppose instead of

conditioning X 1 =

=s and Y 1 = u, we condition them to be X 1 gt 21
and Y 1 st Z,, where Z, and Z, are two random variables with distri-
X e e e i e e R T L
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butions H.l and H2, respectively. That is, .

P{X & A} = [ P{X ¢ AIY

s} dH1(s) and

11}
—
-
£
™
>

1
P{Y & A} Y 1=u}ldHyu) , AeR" . g

n n
Suppose Z1 ;s Z, + Z a, . Then defining 21' =2, - Z a, with

distribution function H1’ one obtains

§ & (A, W) dHi(u) and

P{X & A}

S (A, uddH(u) , A & R", -
ud 2

P{Y ¢ A}

y - - n
. where Cﬁ (A,u) = P{X & AIX u+z aj
- i=1

{,j(A,U) ul.

From Theorem 4.2 one has &(A,u) zZ(A,u) for all increasing upper sets

|~
H

P{Y & AlY 1

ST

-

A, and from Theorem 4.1 one has (,";(A,u) and /;(A,u) increasing in u.
4

Then it is easily seen that since Z, 2 .  Z

n .-I
124 2, ¢ i=£1 a; [that is H (u) £ H, (W], ..

one has P{X € A} 2 P{Y & A} for all increasing sets A ¢ R™. Therefore X
>

st L-

Using analysis similar to that in this section it can be shown that all

the results presented in this section holds true for discrete random vari- "

ables. A special case of the above extension has been used by Shanthi-

kumar and Yao (1985b) in the analysis of closed queueing networks.

5. APPLICATIONS

We will first apply Theorem 3.3 to show that gn 2.0.m defined in

Section 3 satisfies the NDS property of Block, Savits and Shaked (1985)

AR

[see Definition 1.5].
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Theorem 5.1: T = Z—n satisfy the NDS propetry.

/Z,2,m

Proof: From Lemma 3.2 it can be seen that

T T

(5.1) {(T1, T s, where

s S _ . -
1 '(z <s) and mi = mi I(z < s) i 1,2,...,n. Therefore
s>t= (gs, rgs) < (&t, rp_t). Then from (5.1) and Theorem 3.3 one

- st
’Tn)ITi = s} 7= Z—n

270 i=17 et -1,2,2%,m

27 = zi -

has the NDS property for T.

Next we point out an application for Corollary 3.5 in component cannibali-
zation. Consider a collection of heat sources each cooled by its own cooling
system consisting of a set of n identical pumps and a circulation system
[composed of radiators, pipes etc.]. The operation of the heat source is
continued unless either the heat source or the cooling system fails. A
cooling system failure may occur either because all the n pumps have failed
or because the circulation system has failed. The circulation system fails
mainly due to the structural damage caused by fewer number of pumps
working. One may safely assume that the damage accumulation rate increases
as the number of working pumps decreases.

After t time units of operation all the cooling systems are replaced by
spare cooling systems. This t time units may represent the 'high reliable
operatng time' for the cooling system. These pulled out cooling systems
may however be used elsewhere for less critical use. Since some of the
pumps from these pulied out cooling systems may have already failed one
could pool all such cooling systems and assemble fewer number of systems
but all with n operating pumps. In such a case one has to choose the best
circulation systems for these re-assembly. Since it is not economically
feasible to test the circulation system for its structural damage one may use
the following result to choose the desired circulation systems.

Let Ci be the circulation system belonging to the i-th cooling system.
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\
by
Y.
Assume that we have also observed that ki of the n pumps of the i-th :
N
cooling system were not operative at time t. Then if Di is the damage N
accumulated in Ci’ one has from Corollary 3.5 _;
< < < 2z
where n is a permutation of {1,2,...,m} such that V2
< < <
(5-2) kn(1) = kn(z) = eee = kn(m) . ‘-.
One may now use (5.1) and (5.2) to choose the stochastically better N
circulation systems for re-assembly. -
ACKNOWLEDGEMENT
The author would like to thank Moshe Shaked for his helpful sugges- :
tions. 2
¥
-:.




L2 2 o 2oh Bih AL uhh AQ AR ofd g L ot mlt ot s - Lot
T E- - o e e i il e < Sl i e v T Al e ofl atth SRS ot st AR SR g v
AMOAC R A ALOEA LD S AR SIS 0A PO Nt ISR RN T . . - - . .

20

YN RNYYS

. REFERENCES

Arjas, E. and Lehtonen, T. (1978), Approximating Many Server Queues -
by Means of Single Server Queues, Math. Opns. Res., 3, 205-223. -

Block, H.W., Savits, T.H. and Shaked, M. (1985), A Concept of Negative \

Dependence Using Stochastic Ordering, Statistics and Probability . N
Letters, to appear.

Block, H.W., Bueno, V., Savits, T.H. and Shaked, M. (1984), Probability

: Inequalities via Negative Dependence for Random Variables Conditioned

) on Order Statistics, Technical Report, University of Pittsburgh.

Efron, B. (1965), Increasing Properties of Polya Frequency Functions,
Ann. Math. Statist, 36, 272-279.

Kamae, T., Krengel, U. and O'Brien, G.L. (1977), Stochastic Inequalities
On Partially Ordered Spaces, Ann. Prob., 5, 899-912.

Karlin, S. (1965), Total Positivity, Stanford University Press, Stanford. -

Norros, 1. (1984), A Compensator Representation of Multivariate Life Length
: Distributions, with Applications, submitted for publication.

Shaked, M. and Shanthikumar, J.G. (1984), Multivariate Hazard Rates and N

Stochastic Ordering, Technical Report, Dept. of Math, University of ™
Arizona.

Shaked, M. and Shanthikumar, J.G. (1985), Multivariate Hazard Con- o
struction, Technical Report, Dept. of Math., University of Arizona.

Shanthikumar, J.G. and Yao, D.D.W. (1985a), Stochastic Monotonicity of -
Queue Lengths in Closed Queueing Networks, Management Science
Working Paper, University of California, Berkeley.

Shanthikumar, J.G. and Yao, D.D.W. (1985b), The Effect of Increasing
Service Rates in Closed Queueing Networks, Management Science o
Working Paper, University of California, Berkeley.

Veinott, A.F. (1965), Optimal Policy in a Dynamic, Single Product, Non-

stationary Inventory Model with Several Demand Classes, Oprs. Res., ;f:
13, 761-778. .




P e e W N aNa (e W, W
AN aCa ey o PR T T T W RN W,
i SRR AN A NS At Ahe b e ARe AV e A e Ale 40e @t ihite Sk o 2o
B ~ R () - ‘,"_\'v_r-v-v)w\_'J“‘."‘
- Rl et )

Ml RAR A 0h 0y
\

|
M D

Ct

AR

ATV

t“i"‘
| ALY




